
Modular Reasoning about Separation for

Concurrent Data Structures

Kasper Svendsen, Lars Birkedal, Matthew Parkinson

March 20, 2013

1 / 18



Modular Reasoning in SL

Basic separation logic assertions (resources) consists of

I information about some part of the heap

I and rights to modify this part of the heap

For instance, x .f 7→ v asserts

I that the field x .f contains the value v

I and the exclusive right to modify this field

Rights implicitly restricts how the environment is allowed to
modify the heap and what the owner can know about the
current state of the heap

2 / 18



Modular Reasoning about ADTs in SL

To lift this to ADTs we need ADT resources with rights
expressed in terms of the abstraction provided by the ADT
rather than the underlying data representation.

Let htable(x , f ) represent a partial hash table resource that

I asserts exclusive right to modify all keys k ∈ dom(f )

I and that the current value of key k ∈ dom(f ) is f (k)

then

htable(x , f1 ] f2)⇔ htable(x , f1) ∗ htable(x , f2)

3 / 18



Modular Reasoning about ADTs in SL

To lift this to ADTs we need ADT resources with rights
expressed in terms of the abstraction provided by the ADT
rather than the underlying data representation.

Let htable(x , f ) represent a partial hash table resource that

I asserts exclusive right to modify all keys k ∈ dom(f )

I and that the current value of key k ∈ dom(f ) is f (k)

then

htable(x , f1 ] f2)⇔ htable(x , f1) ∗ htable(x , f2)

3 / 18



Related work

Fictional Separation Logic [Jensen 2012],
Superficially Substructural Types [Krishnaswami 2012]

I Client defines a monoid on abstract state

I Sequential setting without reentrancy

Concurrent Abstract Predicates [Dinsdale-Young 2010]

I Shared regions with protocols governing sharing

I Module implementers can construct ADT resources

I First-order, concurrent setting

4 / 18



Our contribution

We present a new separation logic and specification
pattern that allow clients to construct ADT resources, in a
concurrent higher-order setting with reentrancy

The logic combines and extends a lot of previous work

I Higher-order Separation Logic

I Concurrent Abstract Predicates

I Guarded Recursion

5 / 18



Our contribution

We present a new separation logic and specification
pattern that allow clients to construct ADT resources, in a
concurrent higher-order setting with reentrancy

The logic combines and extends a lot of previous work

I Higher-order Separation Logic

I Concurrent Abstract Predicates

I Guarded Recursion

5 / 18



Bag example

interface Bag {

public Bag();

public void Push(Object obj);

public Object Pop();

}

6 / 18



Bag example

Sequential Specification

{emp} new Bag() {ret. bage(ret, ∅)}

{bage(this,A)} Push(x) {bage(this,A ∪ {x})}

{bage(this, ∅)} Pop() {ret. bage(this, ∅) ∗ ret = null}

{bage(this,A) ∗ A 6= ∅} Pop() {ret. ret ∈ A ∗ bage(A \ {ret})}

bage(x ,A) ∗ bage(x ,B)⇒ ⊥

7 / 18



Bag example

Time

Thread 1

x.Push(b)

8 / 18



Bag example

Time

Thread 1

x.Push(b)

bag(x, {a}) bag(x, {a, b})

The sequential spec. just relates the initial and terminal state.

8 / 18



Bag example

Time

Thread 1

x.Push(b)

bag(x, {a}) bag(x, {a, b})???

The sequential spec. just relates the initial and terminal state.
It says nothing about intermediate states.

8 / 18



Bag example

Time

Thread 1

x.Push(b)

bag(x, {a}) bag(x, {a, b})???

This is sufficient in a sequential setting without reentrancy, as
we do not have to consider “interference” inside method calls.

8 / 18



Bag example

Time

Thread 2

Thread 1

x.Push(b)

x.Pop()

But it is not sufficient for a concurrent setting, as we do have
to consider interference inside method calls.

8 / 18



Bag example

Time

Thread 2

Thread 1

x.Push(b)

x.Pop()

bag(x, {a})

??? ???

???

But it is not sufficient for a concurrent setting, as we do have
to consider interference inside method calls.

8 / 18



Bag example

Time

x.Push(b)bag(x, {a}) bag(x, {a, b})

We need to restrict attention to thread-safe implementations.

9 / 18



Bag example

Time

x.Push(b)bag(x, {a}) bag(x, {a, b})

bag(x, {a})

bag(x, {a})

bag(x, {a, b})

We consider a method thread-safe with respect to an abstrac-
tion if, for every intermediate state, there exists some abstract
state that describes the concrete state of the ADT.

9 / 18



Bag example

Time

x.Push(b)bag(x, {a}) bag(x, {a, b})

bag(x, {a})

bag(x, {a})

bag(x, {a, b})

Each method execution thus contains one or more atomic
instructions that modify the abstract state.

9 / 18



Bag example

Time

x.Push(b)bag(x, {a}) bag(x, {a, b})

bag(x, {a})

bag(x, {a})

bag(x, {a, b})

Goal: A specification that allow clients to reason about the
abstract initial and terminal state of each of these atomic
instructions.

9 / 18



Bag example

Time

x.Push(b)bag(x, {a}) bag(x, {a, b})

bag(x, {a})

bag(x, {a})

bag(x, {a, b})

Store the abstract state that describes the concrete state of the
ADT in a phantom field.

9 / 18



Phantom fields and view-shifts

Phantom fields are a logical counterpart to auxiliary fields.

Phantom fields can be split using fractional permissions

xf
p+q7→ v ⇔ xf

p7→ v ∗ xf
q7→ v

and updated through view-shifts:

xf
17→ v1 v xf

17→ v2

View-shifts describe steps that do not modify the state:

p v q ≈ {p}skip{q}

10 / 18



Bag example

Time

x.Push(b)
I ∗ xcont

1/27→ {a} I ∗ xcont
1/27→ {a, b}

I ∗ xcont
1/27→ {a}

I ∗ xcont
1/27→ {a}

I ∗ xcont
1/27→ {a, b}

where I
def
= ∃A. bag(x,A) ∗ xcont

1/27→ A

11 / 18



Bag example

Time

x.Push(b)
I ∗ xcont

1/27→ {a} I ∗ xcont
1/27→ {a, b}

I ∗ xcont
1/27→ {a}

I ∗ xcont
1/27→ {a}

I ∗ xcont
1/27→ {a, b}

where I
def
= ∃A. bag(x,A) ∗ xcont

1/27→ A

The ADT keeps half the cont phantom field.

11 / 18



Bag example

Time

x.Push(b)I I

I

I

I

where I
def
= ∃A. bag(x,A) ∗ xcont

1/27→ A

Clients share the other half.

11 / 18



Bag example

Time

x.Push(b)I I

I

I

I

where I
def
= ∃A. bag(x,A) ∗ xcont

1/27→ A

Idea: Let clients express abstract ADT rights as rights
to update their half of the phantom field.

11 / 18



Bag example

Time

x.Push(b)I I

I

I

I

where I
def
= ∃A. bag(x,A) ∗ xcont

1/27→ A

Updating the phantom field requires both halves, thus
ensuring clients and ADT agree on the current abstract state.

11 / 18



Bag example

Time

x.Push(b)I I

I

I

I

Parameterize the specification of ADT methods with view-
shifts to atomically update the clients’ half of the phantom
field when the abstract state changes.

11 / 18



Refineable bag specification

{emp} new Bag() {ret. bag(ret) ∗ retcont
1/27→ ∅}

∀Y . thiscont
1/27→ Y ∗ P v thiscont

1/27→ (Y ∪ {x}) ∗ Q
{bag(this) ∗ P} Push(x) {bag(this) ∗ Q}

thiscont
1/27→ ∅ ∗ P v thiscont

1/27→ ∅ ∗ Q(null)

∀X . ∀y . thiscont
1/27→ X ∪ {y} ∗ P v thiscont

1/27→ X ∗ Q(y)

{bag(this) ∗ P}Pop(){ret. bag(this) ∗ Q(ret)}

12 / 18



Refineable bag specification

{emp} new Bag() {ret. bag(ret) ∗ retcont
1/27→ ∅}

∀Y . thiscont
1/27→ Y ∗ P v thiscont

1/27→ (Y ∪ {x}) ∗ Q
{bag(this) ∗ P} Push(x) {bag(this) ∗ Q}

thiscont
1/27→ ∅ ∗ P v thiscont

1/27→ ∅ ∗ Q(null)

∀X . ∀y . thiscont
1/27→ X ∪ {y} ∗ P v thiscont

1/27→ X ∗ Q(y)

{bag(this) ∗ P}Pop(){ret. bag(this) ∗ Q(ret)}

12 / 18



Bag example

Given the refinable bag specification clients can derive the
standard sequential specification

{emp} new Bag() {ret. bage(ret, ∅)}

{bage(this,A)} Push(x) {bage(this,A ∪ {x})}

{bage(this, ∅)} Pop() {ret. bage(this, ∅) ∗ ret = null}

{bage(this,A) ∗ A 6= ∅} Pop() {ret. ret ∈ A ∗ bage(A \ {ret})}

bage(x ,A) ∗ bage(x ,B)⇒ ⊥

which enforces a single exclusive owner.

13 / 18



Bag example

But clients can also derive more interesting specifications like
the following shared bag specification

{emp} new Bag() {ret. bags(ret,P)}

{bags(this,P) ∗ P(x)} Push(x) {bags(this,P)}

{bags(this,P)} Pop() {ret. bags(this,P)
∗ (ret = null ∨ P(ret))}

bags(x ,P)⇔ bags(x ,P) ∗ bags(x ,P)

which allows unrestricted sharing and associates ownership of
additional resources with each element.

14 / 18



Why is this difficult?

ADT resources allow us to introduce sharing of the ADT,
but they also allow us to use the ADT to govern ownership
of other mutable data structures.

For instance, the bags(−,P) resource allows us to transfer
ownership of additional resources through the bag.

What if the client instantiates P in bags(−,P) with an
assertion that refers to the bag itself?

15 / 18



Conclusion

We’ve presented a new separation logic and specification
pattern that allow clients to construct ADT resources, in a
concurrent higher-order setting with reentrancy.

The refinement pattern is just one application of the logic;
in addition we have verified

I A Concurrent Runner library (used to parallelize
divide-and-conquer algorithms)

I The C# Joins library (provides a declarative concurrency
model for implementing synchronization primitives)

16 / 18



Questions?

17 / 18



Relation to linearizability

Linearizability aims to establish a fiction of atomicity; our
specification pattern does not!

For instance, the method Push2(x , y) implemented as
Push(x);Push(y) is not linearizable; but using our
specification pattern we can give it a sensible specification:

∀X . thiscont
1/27→ X ∗ P v thiscont

1/27→ (X ∪ {x}) ∗ Q
∀X . thiscont

1/27→ X ∗ Q v thiscont
1/27→ (X ∪ {y}) ∗ R

{bag(this) ∗ P} Push2(x, y) {bag(this) ∗ R}

18 / 18


