Verifying a higher-order,
concurrent, stateful librar

Kasper Svendsen , Lars Birkedal and Matthew Parkinson

September 9, 2012
HOPE 2012

A case study ...

¥ C# Joins library [Russo, Turon & Russo]

¥ declarative way of debPning synchronization primitives, base!
the join calculus [Fournet & Gonthier]

¥ combines higher-order features with state, concurrency,
recursion through the store and Pne-grained synchronizatiol

¥ small (150 lines of C#) realistic library

A case study In modularity

Lock-based

Lock

Non-locking

Concurrent bag

Join implementations

A case study In modularity

[Joins specibcation j

/

Lock-based

\

Lock

Non-locking

Concurrent bag

Join implementations

A case study In modularity

Locks

\

Barriers

/

[Joins specibcation j

/

Lock-based

\

Lock

Non-locking

Concurrent bag

Join clients

Join implementations

A case study In modularity

Locks

\

Barriers

/

[Joins specibcation j

/

Lock-based

N\

Lock

Non-locking

Concurrent bag

Join clients

Join implementations

Joins example

class RWLock {
public SyncChannel acgR, acqW, relR, relW,
private AsyncChannel unused, shared, writer;

public RWLock() {
Join join = new Join();
/[... initialize channels ...

join.When(acqR).And(unused).Do(() => { readers++; shared(); });

unused();

}
}

Joins example

class RWLock {
public SyncChannel acgR, acgW, relR, relW; w
private AsyncChannel unused, shared, writer;

public RWLock() {
Join join = new Join();
/[... initialize channels ...

join.When(acqR).And(unused).Do(() => { readers++; shared(); });

unused();

}
}

Joins example

class RWLock {
public SyncChannel acgR, acgW, relR, relW; w
private AsyncChannel unused, shared, writer;

public RWLock() {
Join join = new Join();
/[... initialize channels ...

Win.When(ach).And(unused).Do(() => { readers++; shared(); });

unused();

}
}

Joins example

class RWLock {
public SyncChannel acgR, acqW, relR, relW, w
private AsyncChannel unused, shared, writer;

public RWLock() {
Join join = new Join();
/[... initialize channels ...

Win.When(ach).And(unused).Do(() => { readers++; shared(); });

unused();

}
}

Joins example

class RWLock {
public SyncChannel acgR, acqW, relR, relW, w
private AsyncChannel unused, shared, writer;

public RWLock() {
Join join = new Join();
/[... initialize channels ...

Win.When(ach).And(unused).Do(() => { readers++; shared(); });

unused();
}} continuation

Joins example

class RWLock {
public SyncChannel acgR, acqW, relR, relW, w
private AsyncChannel unused, shared, writer;

public RWLock() {
Join join = new Join();
/[... initialize channels ...

Win.When(ach).And(unused).Do(() => { readers++; shared(); });

unused();

}} the unused channel

send a message on ; :
9 continuation

A reader/writer lock

class RWLock {
public SyncChannel acgR, acqW, relR, relW,
private AsyncChannel unused, shared, writer;
private int readers = 0;

public RWLock() {
Join join = new Join();
/[... initialize channels ...

join.When(acqR).And(unused).Do(() => { readers++; shared(); });
join.When(acqR).And(shared).Do(() => { readers++; shared(); });
join.When(acqW).And(unused).Do(() => { writer(); });
join.When(relW).And(writer).Do(() => { unused(); });
join.When(relR).And(shared).Do(() => {

If (--readers == 0) unused() else shared(); });

unused();

}
}

A reader/writer lock

synchronous channels to

acquire and release the lock

class RWLock {
public SyncChannel acqR, acqW, relR, relW,;
private AsyncChannel unused, shared, writer;
private int readers = 0;

public RWLock() {
Join join = new Join();
/[... initialize channels ...

join.When(acgR).And(unused).Do(() => { readers++; shared(); });
join.When(acqR).And(shared).Do(() => { readers++; shared(); });
join.When(acqW).And(unused).Do(() => { writer(); });
join.When(relW).And(writer).Do(() => { unused(); });
join.When(relR).And(shared).Do(() => {

If (--readers == 0) unused() else shared(); });

unused();

}
}

A reader/writer lock

synchronous channels to

asynchronous channels

encode the state of the lock

acquire and release the lock

class RWLock {
public SyncChannel acgR, acqW, relR, relW,
private AsyncChannel unused, shared, writer;
private Int readers = 0;

public RWLock() {
Join join = new Join();
/[... initialize channels ...

join.When(acqR).And(unused).Do(() => { readers++; shared(); });
join.When(acqR).And(shared).Do(() => { readers++; shared(); });
join.When(acqW).And(unused).Do(() => { writer(); });
join.When(relW).And(writer).Do(() => { unused(); });
join.When(relR).And(shared).Do(() => {

if (--readers == 0) unused() else shared(); });

unused();

}
}

A reader/writer lock

synchronous channels to asynchronous channels

encode the state of the lock

acquire and release the lock

class RWLock {
public SyncChannel acgR, acqW, relR, relW,
private AsyncChannel unused, shared, writer;
private Int readers = 0;

public RWLock() { each chord matches and sends

Join join = new Join(); exactly one asynchronous messag
/I ... initialize channels ...

join.When(acqR).And(unused).Do(() => { readers++; shared(); });
join.When(acqR).And(shared).Do(() => { readers++; shared(); });
join.When(acqW).And(unused).Do(() => { writer(); });
join.When(relW).And(writer).Do(() => { unused(); });
join.When(relR).And(shared).Do(() => {

if (--readers == 0) unused() else shared(); });

unused();

}
}

A reader/writer lock

synchronous channels to asynchronous channels

encode the state of the lock

acquire and release the lock

class RWLock {
public SyncChannel acgR, acqW, relR, relW,
private AsyncChannel unused, shared, writer;
private Int readers = 0;

public RWLock() { each chord matches and sends

Join join = new Join(); exactly one asynchronous messag
/I ... initialize channels ...

join.When(acqR).And(unused).Do(() => { readers++; shared(); });
join.When(acqR).And(shared).Do(() => { readers++; shared(); });
join.When(acqW).And(unused).Do(() => { writer(); });
join.When(relW).And(writer).Do(() => { unused(); });
join.When(relR).And(shared).Do(() => {

if (--readers == 0) unused() else shared(); });

unused();
} initially, there is exactly one

} pending asynchronous messs

Veribcation challenges

class RWLock {
public SyncChannel acgR, acqW, relR, relW,
private AsyncChannel unused, shared, writer;
private int readers = 0;

public RWLock() {
Join join = new Join();
/[... initialize channels ...

join.When(acqR).And(unused).Do(() => { readers++; shared(); });
join.When(acqR).And(shared).Do(() => { readers++; shared(); });
join.When(acqW).And(unused).Do(() => { writer(); });
join.When(relW).And(writer).Do(() => { unused(); });
join.When(relR).And(shared).Do(() => {

If (--readers == 0) unused() else shared(); });

unused();

}
}

Veribcation challenges

class RWLock {
public SyncChannel acgR, acqW, relR, relW,
private AsyncChannel unused, shared, writer;
private int readers = 0;

public RWLock() {
Join join = new Join();
/[... initialize channels ...

join.When(acqR).And(unused).Do(() => { readers++; shared(); });
join.When(acgR).And(shared).Do(() => { readers++; shared()} });
join.When(acqW).And(unused).Do(() => { writer(); });
join.When(relW).And(writer).Do(() => { unused(); });
join.When(relR).And(shared).Do(() => {

If (--readers == 0) unused() else shared(); });

unused();

}
}

' 's_tate foect-

Veribcation challenges

class RWLock {
public SyncChannel acqR, acqW, relR, relW,;
private AsyncChannel unused, shared, writer;
private int readers = 0;

reentrant continuation

public RWLock() {
Join join = new Join();
/[... initialize channels ...

join.When(acqR).And(unused).Do(() => { readers++; shared(); });
join.When(acgR).And(shared).Do(() => { readers++; shared()} });
join.When(acqgW).And(unused).Do(() => { writer(); });
join.When(relW).And(writer).Do(() => { unused(); });
join.When(relR).And(shared).Do(() => {

If (--readers == 0) unused() else shared(); });

unused();

}
} state effect

Joins specibcation

Locks e Barriers
N\ /
/ \
Lock-based Non-locking

Lock Concurrent bag

Specibcation

¥ Requirements:
¥ Ownership transfer
¥ Stateful reentrant continuations

¥ Restrict attention to non-self-modifying clients

ldeas

¥ Let clients pick an ownership protocol for each channel

¥ The channel pre-condition describes the resources the sender is
required to transfer to the recipient upon sending a message

¥ The channel post-condition describes the resources the recipient is
required to transfer to the sender upon receiving the message

¥ The channel post-condition of asynchronous channels must be em

¥ Prove chords obey the ownership protocol, assuming char
obey the ownership protocol (to support reentrancy)

Specibcation

¥Send a message on channel ¢ (async or s

{join(P,Q,]) * chan(c,j) x P(c)}
c()
{join(P, Q,]) * chan(c,]) * Q(c) }

Specibcation

¥Send a message on channel c (async or s

family of channel pre- and post-conditions, indexed by cha

{join(P, Q,]) * chan(c,]) *P(c)}
c()
{join(P,Q,J) x chan(c,]) x Q(c)}

Specibcation

¥Send a message on channel c (async or s

transfer channel pre-
family of channel pre- and post-conditions, indexed by cha condition from client to

join instance

{join(P, Q,]) * chan(c,]) *xP(c)}
c()
{join(P,Q,J) x chan(c,]) x Q(c)}

transfer channel post-

condition from join
Instance to client

Specibcation

¥Send a message on channel c (async or s

transfer channel pre-
family of channel pre- and post-conditions, indexed by cha condition from client to

join instance

{join(P, Q,]) * chan(c,]) *xP(c)}
c()
{join(P,Q,J) x chan(c,]) x Q(c)}

if ¢ is an asynchronous channel, t transfer channel post-

channel post-condition must be e condition from join
Instance to client

Specibcation

¥ Register a new chord with pattern p and continuation

L b"# {! i x P(x)! join(P,Q,j)}

{ jOininit—pat(P1 QiJ) | pattern(p1 j1 X) }
U xex Q(x) 1 join(P, Q, 1)}

p.Do(b)
{jOininit—pat(P’ Q’ J) }

Specibcation

¥ Register a new chord with pattern p and continuation

pattern p matches the multiset of channels

JOIN; i 02t (P, Q,)) ! pattern(p, J, X)
L b™ {! xi1x P(X)! Join(P,Q,])}
{! x1 x Q(x) ! JoIin(P, Q,])}
0.Do(b)

{jOininit—pat(P’ Q’ J) }

Specibcation

¥ Register a new chord with pattern p and continuation

pattern p matches the multiset of channels

jOininit—pat(P’ Q!J) | pattern(p1j1 X)
L b {! xix P(x) ! join(P,Q,j)}

! x x Q(X) NQIN(P, Q,])}

resources senders must

0.Do(b)

{jOininit_pat(P1 Q, J) } transfer to recipient

Specibcation

¥ Register a new chord with pattern p and continuation

pattern p matches the multiset of channels

jOininit—pat(P’ Q!J) | pattern(p1j1 X)
L b {! xix P(x) ! join(P,Q,j)}

{! x1 x Q(x) NQIn(P, Q,])}
p'DO(b) resources senders must
{join-) t(P Q J)} transfer to recipient
INnIt-pa 1 XX

resources recipient must

transfer to senders

Specibcation

¥ Register a new chord with pattern p and continuation

JOIN; i 02t (P, Q,)) ! pattern(p, J, X)
L b™ {! xi1x P(X)! Join(P,Q,])}
{! x1 x Q(x) ! JoIin(P, Q,])}
0.Do(b)

{jOininit-pat(P1 Q, J) } the continuation is allowed to

assume channels obey thei
ownership protocol

Verifying Clients

. ocks e Barriers

N\ /

[Joins specibcation J

/ N\

Lock-based Non-locking

Lock Concurrent bag

Reader/Writer lock

¥ Given resource invariants R ang, Bicked by client) s.t.

T

N. R(n) = R,

I

(n+1)

¥ R, : read permission to underlying resource

¥ R(0O): write permission to underlying resource

¥ R(n): resource after splitting off n read permissions

Reader/Writer lock

¥ Given resource invariants R ang, Bicked by client) s.t.

nl[N. R(n) = R., CR(n + 1)
¥ R, : read permission to underlying resource

¥ R(0O): write permission to underlying resource

¥ R(n): resource after splitting off n read permissions

¥ The reader/writer lock satisPes the following specibcatio

{emp} acqR() {R,.} {R.,} relR() {emp}
{emp} acqW() {R(0)} (R(0)} relwW() {emp}

¥ Assign pre-conditions to asynchronous channels

P (unused) = readers " 0#R(0)
P (shared) = $n %N. readers " n#R(n)#n> 0
P (writer) = readers !" 0

¥ Assign pre- and post-conditions to synchronous channel:

P(acqR = emp Q(acgR = Ryo
P(acqWy= emp Q(acqWy= R(0)
P(relR) = Ry Q(relR) = emp

P(relw) = R(0) Q(relW) = emp

¥ Prove chords obey channel ownership protocol

class RWLock {
public int readers = O;
public RWLock() {

join.When(acqR).And(unused).Do(() => { readers++; shared(); });

=
}

¥ Prove chords obey channel ownership protocol

class RWLock {
|5L|b|i0 Int readers = 0;
public RWLock() {
jé)lin.When(ach).And(unused).Do(() => { readers++; shared(); });
} 4)
{P(acgR ! P(unused) ! join (P,Q,])}
readers++

shared();
{Q(acgR ! Q(unused) ! join (P, Q,])}

- J

¥ Prove chords obey channel ownership protocol

class RWLock {
|5L|b|i0 Int readers = 0;
public RWLock() {
jé)lin.When(ach).And(unused).Do(() => { readers++; shared(); });
}} /\
4 N
{readers !" O#R(0) #join (P, Q,])}
readers++
{readers I" 1#R(1) #R, #Join (P,Q,])}
shared();

{Rro #jOin (P1 Q’J)}
- J

¥ Prove chords obey channel ownership protocol

class RWLock {

}

public int readers = O;

public RWLock() {

join.When(acqR).And(unused).Do(() => { readers++; shared(); });

=

)

[

_

{readers !" 0#R(0) #join (P,Q,])}

readers++

{readers " 1#R(1) #R,, #join (P,Q,])}

shared();
{Rro #jOin (P1 Q’J)}

\

P(shared)= In" N;.
readers #$n YR (n)

\

J

Verifying an Implementatior

Locks e Barriers
N\ /
[Joins specibcation j
/ N\

D [vorocns
| |

- Concurrent bag

Verifying an Implementatior

¥ Challenges:

¥ High-level join primitives implemented using
shared mutable state

¥ Debnition of recursive representation predica

Verifying an Implementatior

¥ Challenges:

¥ High-level join primitives implemented using
shared mutable state

¥ Debnition of recursive representation predica

guarded recursion & step-indexed mode

class Message {
public int state;

public Message() {
state = 0;

}

public void Receive() {
state = 1;
}
}

Messages

Messages

¥ Assume channel pre- and post-conditions P anc

¥ Imagine a message on channel c

pending received

Messages

¥ Assume channel pre- and post-conditions P anc

¥ Imagine a message on channel c

pending matched received released

Messages

¥ Assume channel pre- and post-conditions P anc

¥ Imagine a message on channel c

pending matched received released

Messages

¥ Assume channel pre- and post-conditions P anc

¥ Imagine a message on channel c

pending matched received released

Messages

¥ Assume channel pre- and post-conditions P anc

¥ Imagine a message on channel c

pending matched received released

"0 state !" 1

Messages

¥ Assume channel pre- and post-conditions P anc

¥ Imagine a message on channel c

pending matched received released

1 1

- anybody can perform this transition

Messages

¥ Assume channel pre- and post-conditions P anc

¥ Imagine a message on channel c

pending matched received released

- anybody can perform this transition
-1 only message sender can perform this transition

Messages

¥ Use Concurrent Abstract Predicates [Dinsdale-Young et.
to Impose this low-level protocol on messages

pending matched received released

- anybody can perform this transition
-1 only message sender can perform this transition

Messages

¥ Use Concurrent Abstract Predicates [Dinsdale-Young et.
to Impose this low-level protocol on messages

pending matched received released

higher-order protocol
-1 anybody can perform this transition

——@ only message sender can perform this transition

HOCAP

¥ Higher-order protocols are difbcult; the previous
proposal [Dodds et. al.] from POPL11 is unsound!

HOCAP

¥ Higher-order protocols are difbcult; the previous
proposal [Dodds et. al.] from POPL11 is unsound!

¥ We restrict attention to state-independent higher-
order protocols.An assertion P is expressible using
state-independent protocols (SIPs) Iff

' R, S . Prop. valid (P" R#J5)$ noprotocol(R) $ nostate(S)

Invariant under arbitrary Invariant under arbitrary
changes to protocols changes to the state

¥ We require all channel pre- and post-conditions to be
expressible using SIPs

Summary

¥ Veribed the lock-based joins Implementation
against the high-level joins specibcation

¥ Veribed a couple of classic synchronization
primitives using the high-level joins specibcatio

¥ Given a logic and model for HOCAP with suppc
for state-independent higher-order protocols

¥ TRs available atww.itu.dk/~kasv

http://www.itu.dk/~kasv
http://www.itu.dk/~kasv

Questions?

Higher-order protocols in CAl

Let

I

PE(zt 0#(y!" 0] $[y" o_'J))$
(z 1" 1#[y " 0])

where
Ila]:y!™ 11 yI" 2
Ja]:y!™ 10 yI" 3
Kla]: P! P

then P is stable, bytp| is not

