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Introduction

Dependent Type Theory

higher-order functional programming language

with integrated reasoning & verification

lacks general recursion

lacks effects such as state, IO, etc.

This talk: cheap way of adding general recursion
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Partiality

Partiality

unrestricted recursion breaks propositions-as-types

Our setting

treat partiality as an effect

use monads to add encapsulate effects in a pure language

O : Set→ Set

fixτ : (O(τ)→ O(τ))→ O(τ) + ret, bind
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Admissibility: The problem
Problem: fixτ unsound in sufficient expressive TTs

the type of fixτ

fixτ : (O(τ)→ O(τ))→ O(τ)

corresponds to fixpoint induction

∀f : X → X . ∀P ⊆adm X . (∀x ∈ P. f (x) ∈ P)⇒ fix(f ) ∈ P

in STT all partial types are admissible

but in DTT there exists inadmissible types, e.g.,

O({c : N→ O(N) | ∃n ∈ N. c(n) = ΩN})

where ΩN = fixN(idO(N))
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Admissibility: Previous work

Crary: introduce explicit admissibility proofs on fix

very expressive & allows for easy implementation

significant proof obligation for every use of fix

fixτ : adm(O(τ))→ (O(τ)→ O(τ))→ O(τ)

complicated admissibility theory for subset- & Σ-types

HTT: restrict to admissible types

omits subset-types, strong Σ-types, inductive families
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Admissibility: This talk

Idea
Only allow reasoning about effectful computations through

specs (as in a program logic for an imperative language.)

How?

collapse equality on effectful computations

if M ,N : O(τ) then M =O(τ) N

types as only specification
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Admissibility: This talk

Collapsed equality

usual type constructors closed under admissible types

Σ,Π, {x : τ | P},W ,O

{x : O(τ) | P(x)} trivially admissible, as P is constant

in particular,

{c : N→ O(N) | ∃n ∈ N. c(n) = ΩN} ∼= N→ O(N)
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Admissibility: This talk

Collapsed equality

subsets of partial types useless

{c : N→ O(N) | ∃n ∈ N. c(n) = ΩN} ∼= N→ O(N)

but partial subset types are not

Πn : N. ΠG : G. O(1+{f : VG → N | coloring(G , f , n)})

they express partial correctness specs
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Admissibility: This talk

Benefits

avoid all admissibility conditions

full power of underlying dependent type theory

easily implementable as extension of existing DTT

Drawbacks

no equational reasoning about effectful computations

Cheap implemention of a spec logic in a DTT
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Hoare Type Theory

Hoare Type Theory

extends DTT with partial stateful computations

new version: extends CIC

implementable as axiomatic extension of Coq

demonstrate approach scales to realistic DTTs

illustrate expressiveness despite collapsed equality
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HTT: Underlying DTT
Universes

Prop and Set (impredicative) and Type (predicative)

Prop : Type Set : Type

and Prop
prf

⊆ Set
el
⊆ Type

Type constructors

Set,Type: 1,Σ,Π,W

Prop: 1,weak Σ,Π
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HTT: Effectful computations

partial stateful computations

index partial types by pre- and post-condition

Γ ` {P}τ{Q} : Set

heap type to reason about computation states

Heap : Type

empty, h[l 7→τ v ], ...

pre- and post-condition expressed as Heap predicates

P : Heap→ Prop

Q : τ → Heap→ Heap→ Prop
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HTT: Example

Stack ADT

Πα : Set. Σβ : Set. Σinv : β × α seq ×Heap→ Prop.

{λi . i = empty}β{λr , i , t. inv(r , [], t)} ×
Πr : β. Πv : α. {λi . ∃l , inv(r , l , i)}

1

{λr , i , t. ∀l , inv(r , l , i)⇒ inv(r , v :: l , t)} ×
...

β : abstract representation type

inv : abstract representation predicate
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Admissibility in PER models

PER models

partial equivalence relations over universal pre-domain V

V ∼= 1 + N + (V× V) + (V→ V⊥) + V⊥

models a dependent type universe with 1,Σ,Π,W -types

Partiality

fix : (inT (R)→ inT (R))→ inT (R) for admissible R

PERs model DTT + fixτ with explicit adm. proofs
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Admissibility in PER models

Complete PERs

closed under limits of ω-chains

all partial types admissible

complete PERs do not model strong Σ-types
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Admissibility in PER models

Monotone PERs

a PER R ⊆ V× V is monotone iff

∀x , y ∈ |R |. x ≤ y ⇒ (x , y) ∈ R

collapses equality on PERs with a least element

standard DTT types (0, 1,N,+,Σ,Π,W ) monotone

complete monotone PERs do model strong Σ-types

CMPERs model DTT + fixτ with collapsed O-equality
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HTT model

Scales to HTT

contexts and types modelled with assemblies

small types modelled with complete monotone PERs

propositions modelled as regular subobjects of assemblies
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HTT model

UFam(CMPer(V)) UFam(Asm(V)) Asm(V)→

Asm(V)

Iel

Rel

q

split fibred reflection (Rel a Iel)

the coproducts induced by (Rel a Iel) are strong

split generic object for q in Asm(V)

Iel ◦ Rel preserves W-types from types in the image of Iel

Theorem: Underlying DTT is sound.
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Summary

We have

presented a new approach to general recursion in DTT

presented a semantic account of this approach

shown that it scales to a model of Coq

implemented it as an axiomatic extension of Coq
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