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Introduction

Dependent Type Theory
o higher-order functional programming language
o with integrated reasoning & verification
o lacks general recursion

o lacks effects such as state, 10, etc.

This talk: cheap way of adding general recursion
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L
Partiality

Partiality

o unrestricted recursion breaks propositions-as-types

Our setting
o treat partiality as an effect

o use monads to add encapsulate effects in a pure language

O : Set — Set
fix, : (O(7) — O(7)) — O(7) + ret, bind
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Admissibility: The problem

Problem: fix, unsound in sufficient expressive TTs
o the type of fix,
fix, : (O(1) — O(71)) — O(7)
corresponds to fixpoint induction

VF: X = X. VP Cogm X. (Vx € P. f(x) € P) = fix(f) € P
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.
Admissibility: The problem

Problem: fix, unsound in sufficient expressive TTs
o the type of fix,
fix, : (O(1) — O(71)) — O(7)
corresponds to fixpoint induction

VF X = X. VP Cogm X. (Vx € P. £(x) € P) = fix(f) € P
o in STT all partial types are admissible
o but in DTT there exists inadmissible types, e.g.,
O({c:N— O(N) | 3dn € N. ¢(n) = Qn})
where Qn = fixy(idoa))
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Admissibility: Previous work

Crary: introduce explicit admissibility proofs on fix
o very expressive & allows for easy implementation

o significant proof obligation for every use of fix
fix, : adm(O(7)) — (O(1) — O(71)) — O(7)

o complicated admissibility theory for subset- & ¥ -types
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S
Admissibility: Previous work

Crary: introduce explicit admissibility proofs on fix
o very expressive & allows for easy implementation

o significant proof obligation for every use of fix
fix, : adm(O(7)) — (O(1) — O(71)) — O(7)
o complicated admissibility theory for subset- & ¥ -types

HTT: restrict to admissible types

o omits subset-types, strong 2-types, inductive families
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Admissibility: This talk

Idea

Only allow reasoning about effectful computations through
specs (as in a program logic for an imperative language.)
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Admissibility: This talk

Idea
Only allow reasoning about effectful computations through

specs (as in a program logic for an imperative language.)

How?
o collapse equality on effectful computations

if M,N : O(7) then M =o(-y N
o types as only specification
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Admissibility: This talk

Collapsed equality

o usual type constructors closed under admissible types

Y M{x:7|P}H,W,0

o {x:0(7)| P(x)} trivially admissible, as P is constant
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L
Admissibility: This talk

Collapsed equality

o usual type constructors closed under admissible types

Y M{x:7|P}H,W,0
o {x:0(7)| P(x)} trivially admissible, as P is constant
e in particular,

{c:N = O(N)|3neN. c(n) = Q) =N — O(N)
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L
Admissibility: This talk

Collapsed equality

o subsets of partial types useless

{c:N = O(N)|3neN. c(n) = Q} = N — O(N)

o but partial subset types are not

Mn:N.NG:G. O(1+{f : Vo — N | coloring(G,f,n)})

o they express partial correctness specs
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Admissibility: This talk
Benefits
o avoid all admissibility conditions
o full power of underlying dependent type theory

o easily implementable as extension of existing DTT

Drawbacks

e no equational reasoning about effectful computations

Cheap implemention of a spec logic in a DTT
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Hoare Type Theory

o extends DTT with partial stateful computations
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e
Hoare Type Theory

Hoare Type Theory
o extends DTT with partial stateful computations
o new version: extends CIC
o implementable as axiomatic extension of Coq

demonstrate approach scales to realistic DT Ts

illustrate expressiveness despite collapsed equality
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HTT: Underlying DTT

Universes

o Prop and Set (impredicative) and Type (predicative)

Prop : Type Set : Type
prf el
and Prop C Set C Type
Type constructors

o Set, Type: 1,211, W
o Prop: 1, weak ¥,
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HTT: Effectful computations

o partial stateful computations

o index partial types by pre- and post-condition

M= {P}7{Q} : Set
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S
HTT: Effectful computations

o partial stateful computations
o index partial types by pre- and post-condition

M= {P}7{Q} : Set
o heap type to reason about computation states

Heap : Type

empty, h[/ —. v], ...

o pre- and post-condition expressed as Heap predicates
P : Heap — Prop

Q : 7 — Heap — Heap — Prop
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HTT: Example

Stack ADT

Mo : Set. X3 : Set. Xinv : f X a seq x Heap — Prop.
{Ai. i =empty}B{\r,i, t. inv(r,[],t)} x
Mr:p. Nv:a. {\i. 3l inv(r, 1)}
1
{Ar, i, t. NN inv(r, 1, i) = inv(r,v [ t)} X

o (3 : abstract representation type

o inv : abstract representation predicate

Partiality and Dependent Types
ty p P 13719



S
Admissibility in PER models

PER models

o partial equivalence relations over universal pre-domain V

VZ14N+(VxV)+(V-V,)+V,

o models a dependent type universe with 1,2, 1, W-types
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S
Admissibility in PER models

PER models

o partial equivalence relations over universal pre-domain V

VZ14N+(VxV)+(V-V,)+V,
o models a dependent type universe with 1,2, 1, W-types
Partiality

o fix: (int(R) — int(R)) — int(R) for admissible R
o PERs model DTT + fix, with explicit adm. proofs
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Admissibility in PER models

Complete PERs
o closed under limits of w-chains
o all partial types admissible

o complete PERs do not model strong > -types
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S
Admissibility in PER models

Monotone PERs
e a PER R CV x V is monotone iff

Vx,y € |R|. x<y=(x,y) €R

collapses equality on PERs with a least element

standard DTT types (0,1,N,+, %, T, W) monotone

complete monotone PERs do model strong X -types

o CMPERs model DTT + fix, with collapsed O-equality
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HTT model

Scales to HTT
o contexts and types modelled with assemblies
o small types modelled with complete monotone PERs

o propositions modelled as regular subobjects of assemblies
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S
HTT model

Re
—
UFam(CMPer(V)) ——— UFam(Asm(V)) ———  Asm(V)™

To J
\ /
? Asm(V)
o split fibred reflection (Re o Ze)
o the coproducts induced by (R - Z) are strong
o split generic object for ¢ in Asm(V)

o Z. o Re preserves W-types from types in the image of Z,

Theorem: Underlying DTT is sound.
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S
Summary

We have
o presented a new approach to general recursion in DTT
o presented a semantic account of this approach
e shown that it scales to a model of Coq

o implemented it as an axiomatic extension of Coq
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