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1 Complete ordered families of equivalences over w

2

Definition 1 (o.f.e.). An ordered family of equivalence relations (o.f.e.) over w? is a pair (X, (%)ecw?),

consisting of a set X and an w?-indezed set of equivalence relations =, satisfying

o Vz,ye X. x 20 Y

o Vz,y € X. Va,b € w?. agb/\xgyﬁxéy

evVryc X. Vacw? 2 Zy)=ax=y
Definition 2. Let (X, (£x)acw?) and (Y, (£y )ecw?) be 0.f.¢’s. A function f: X — Y is non-expansive if

Vo, 20 € X. Va € W2 11 £x 20 = f(21) 2y f(22)
and is contractive if
Vo, 20 € X. Va € w?. (Vb < a. x; gX r2) = f(x1) Zy f(x2)

Definition 3 (Coherent families and limits). Let (X, (£),cw2) be an o.f.e., I a subset of w? and (z4)ecr an
I-indexed sequence of elements in X. Then (x4)qcr i a coherent family if

Va,bel. a<b= z, =y
An element x € X is a limit of the sequence (x4)acr if

Vael =z,



Definition 4. An o.fe. (X,(%)qcw?) has chosen partial limits iff for any b € w? there exists a function

limg<p o that maps a bl-indexed coherent family (z4)a<y to a limit, such that for any two bl-indexed
coherent families (24)a<b and (Ya)a<b,

(Va < b. 24 = y,) = limz, = limy,
a<b a<b

Definition 5 (Completeness). An o.f.e. (X, (=)qcw?) is complete iff all w?-indexed coherent families have
limits and it has chosen partial limits.

Definition 6 (U). Let U denote the category of complete ordered family of equivalence relations and non-
expansive maps.

1.1 Uniform predicates

Definition 7 (Uniform predicates, UPred(X)). A uniform predicate, UPred(X), over a set X is defined
as

UPred(X) € {p e P(w? x X) | Y(a,z) € p. Vb < a. (b, x) € p}
with the following A-indexed equivalence relations:

p=q iff Ipla=ldla where lp)a Z{(b,2) €p|b < a}
Lemma 1. UPred(X) is an o.f.e.

Proof. The first o.f.e. condition follows from the fact that |plo,o = 0 for all p € UPred(X). The second
o.f.e. condition follows easily from the fact that | |p|y]a = |p]a for all p € UPred(X) and a,b € w? such
that a < b. Lastly, the third o.f.e. condition follows easily from the fact that for every a € w? there exists
an b € w? such that a < b. O

Lemma 2. UPred(X) has chosen partial limits.

Proof. Let b € w? and define lim..; as follows:

lingpad:ef{(a,x) cwxX|a+1<bA(a,z) € pas1}
a<

Let (pa)a<s and (gq)a<s be two coherent families such that Ya < b. p, = q,. To show that limgpp, =

limg<p g assume (a,z) € limgee.py. Then a +1 < ¢ and (a,z) € pay1. Hence, pgy1 atl Ga+1 and thus
(a,2) € gas1- It follows that (a,z) € limy<.q, as required. limg<p g, C limg<p p, follows by a symmetric
argument.

We also need to show that lim,<,p, € UPred(X) for a coherent family (py)a<p.- To that end, let
(¢,x) € limg<p po and d < ¢. By definition, ¢+ 1 < b and (¢,x) € pet1. Since p.y1 is a uniform predicate, it
follows that (d,z) € pey1. Furthermore, since d < ¢ it follows that d + 1 < ¢+ 1 and thus by the coherent

property that pgi1 = pet1- Hence, (d, ) € pg1 and thus (d,x) € lim,<p p, as required.

Lastly, it remains to show that lim,<p, p, is a limit for a coherent family (ps)a<p. Let ¢ < b. To show
that |lima<p Pale € |Pele, assume (d,x) € |limgeppale. Then d < ¢, d+ 1 < b and (d,z) € pgy1. Since
d < c it follows that d + 1 < ¢ and thus by the coherent property that pgi1 et pe. Thus, (d,z) € p. and
(d,z) € |pc)c. To show that [pele C |limgep Po e, assume (d,z) € [pe)c. Then d < ¢ and (d, z) € p.. Thus
d+ 1 < ¢ and by the coherence property that pgi1 dtt pe- It thus follows that (d,z) € pgy1. Lastly, since
d+1 < ¢ < bwe have that (d,z) € limg<p pq. O

Lemma 3. UPred(X) has limits of w?-indexed coherent families.



Proof. Let (pa)acw? be a coherent family in UPred(X). Let lim, p, = {(a,7) € w? x X | (a,2) € pat1}-

To show that p € UPred(X), assume (a,z) € p, b < a. Hence, by definition of p, (a,z) € pat1-
Since pg+1 € UPred(X) it follows that (b,y) € pay1. Since b < a it follows that b+ 1 < a + 1 and thus

b1 .
Pot1 = pat1. Hence, (b,y) € pysr and (b,y) € lim, p,.
It thus remains to show that lim, p, is a limit of (pa)ecw2- Let b € w?. To show that |lim, pa|s € |[ps]s
assume that (¢, z) € [lim, p,s|p. Then ¢ < b and (¢,x) € pey1. Since ¢ < b it follows that ¢ +1 < b and

thus peyq ot py. Hence, (¢,x) € pp and (¢, z) € |pp]s, as required. To show that |py|p C [lim, pa s, assume
that (¢,x) € |pp]p. Then, ¢ < b and (¢,x) € pp. Since ¢ < b it follows that ¢ +1 < b and by coherence,

Det1 ot! pp. Hence, (¢, x) € pet1 and (¢, z) € lim, p,, as required. O

Lemma 4. The chosen partial limits inUPred(X) respect the partial order C on UPred(X). In particular,
for any coherent families (pg)a<s and (qa)a<b,

(Va <b. pa C qa) = limp, Climg,
a<b a<b
Proof. Assume (¢, z) € limg<ppy. Then ¢ +1 < b and (¢, ) € per1 C ¢etr1- Thus, (¢, ) € limy<p qq, as
required. O

Lemma 5. Limits in UPred(X) for w?-indexed coherent families respect the partial order C on UPred(X).
In particular, for any coherent families (pa)acwz and (¢a)acw?,

(Va € w?. pa € ga) = limp, C limgq
Lemma 6. (UPred(X), Q) is a complete Heyting algebra with meets and joins given by
/\S d:efﬂS: {(a,r) € w? x X | Vp € S. (a,x) € p}
\/S d:erS’: {(a,r) €w? x X | Ip € S. (a,x) € p}
and implication given by
p=q={(a,2)|Vb<a. (bz)Ep= (bz)€q}

Constructions

[] []

Definition 8. Let X = (X, (=x)acw?z) and Y = (Y, (=y)acw?) be o.f.e. Then the o.f.e. of non-expansive
functions X —pe Y is defined as follows:

def

X —=ne Y={f: X =Y [ is non-expansive}, (%X_mey)a@,z)

where f Zx_, v g=ZVr e X. f(z) 2y g(x).
Lemma 7. If X and Y are o.f.e.s and Y has chosen partial limits then X —,. Y has chosen partial limits.

Proof. Let b € w? and define the chosen limits function for a coherent family (f,)q<p,

lim f, = Az € X. lim f,(z)
a<b a<b

By the definition of £x_, y it follows that (f,(x))a<s is a coherent family in ) for any x € X and thus
that lim, <y, f, is well-defined.



To show that lim, ., f, is non-expansive and thus an element of X —,. ), assume x; < 5. If ¢ < b then
(lim fo)(21) = lim fo(21) = fe(z1) = fe(x) = lim fo(xs) = (lim fo)(x2)
a<b a<b a<b a<b
by non-expansiveness of f., as required. If b < ¢ then f,(z1) L fa(z2) for all @ < b and thus,
li =1 =1 = (li
(i fo) (1) = lim fo (1) = lim o (22) = (lim ) (22)
To show that limg<p fq is a limit, let a € w? such that ¢ < b and z € X. Then,
li =1 Ll =
(lim fu)(z) = lim fo(2) £ Jule) = (f)(@)
as required.

Lastly, let (fa)a<b and (gq)a<p be two coherent families such that
Va <b. fo = ga
To show that limg<p fu = limg<p ga, let 2 € X. Then, it follows that f,(z) = g,(x) for all a < b and thus
li = li =1i = (i
(lim fo)(2) = lim fa(2) = lim ga () = (lim ga)(2)
O

Lemma 8. If X and Y are o.f.e.s and Y has limits for w?-indexed coherent families then so does X —s,e V.

Proof. Let (fa)acw? be a coherent family in X —,. Y. Define the limit as follows,
lim fo = Az € X. lim fo(x)

This is well-defined as (fq(2))qcw? defines a coherent family in ) for all x € X. To show that lim, f, is

non-expansive, assume L 5. Then,
(Hm fo) (21) = lm fu(@1) = fo(w1) £ folez) 2 lim fo(22) = (lim fo)(z2)
by non-expansiveness of f; and the limit property of ).
Lastly, to show that lim, f, is a limit let b € w? and € X. Then
(1im £,)(w) = lim fo(2) £ fo(x) = (fy) (@)

by the limit property of ). O

Definition 9. Let X = (X, (£x)acw?) and Y = (Y, (£y )acw?) be partially ordered o.f.e.s Then the o.f.e. of
monotone non-expansive functions X =" is defined as follows:

XYy f: X "8"Y | f is non-expansive}, (Zx .. v )acw?)

where f £x .y g2 Vo € X. f(x) Ly g(a).

Lemma 9. Let X and Y be partially ordered o.f.e.s. If Y has chosen partial limits such that for any two
coherent families (q)a<b and (Ya)a<p in Y such that

(Va < b. 2, <y yq) = limz, <y limy,
a<b a<b

then X 2" Y has chosen partial limits.



Proof. Let b € w? and define the chosen limits function as follows for a coherent family (fs)a<b,
}Ilg fa=Ar e X. }fgi fa(x)

We need to show that lim, . f, is monotone. Thus, assume 7 <x xo. Then by monotonicity of f, it follows
that fu(x1) <y fa(x2) for all a < b. Thus, by assumption lim,<p fo(z1) <y lim,<p fo(22), as required.
The proof that lim,y f, is well-defined, a limit and sufficiently unique is the same as in Lemma 8. [

Lemma 10. Let X and Y be partially ordered o.f.e.s. If Y has limits for all w?-indexed coherent families
such that for any two coherent families (X4)acw? and (Ya)acw? n Y such that

(Va. x4 <y yo) = limz, <y limy,
a a

then X ™3" Y has limits for all w?-indexed coherent families.

Definition 10. Let X be a set. Then A(X) = (X, (£)qcw?) where %0 is the total relation and ™" is the

identity for (n,m) # (0,0).

(=)

Lemma 11. A(X) is a c.o.f-e. for any non-empty set X .

Proof. The proof that A(X) is an o.f.e. is trivial. To show that A(X) has chosen partial limits, let (z4)a<b
be a coherent family in A(X) and pick an element x € X. Now, define

limz, =
a<b

x if b= (0,0) or b= (0,1)
Z(0,1) ifb> (0, 1)

If b = (0,0) this is vacuously a limit as a £ b for all a. If b = (0,1) this is also vacuously a limit as 20 i

the total relation. Lastly, if b > (0,1) this is vacuously a limit as 2y ;) = x, for all (0,1) < a < b by the
coherence property. Furthermore, for any two coherent families (z,)q<p and (ya)a<p such that z, < y, for
all @ < b we clearly have that lim,p x, = limg<p Yq-

Finally, A(X) obviously has limits for all w?-indexed coherent families, by taking the limit of (2,)qew?
to be I(O,l)' O

Definition 11 (Locally non-expansive and locally contractive functor). A bi-functor F : U°P x U — U s
locally non-expansive iff

VX, X,V € obiU). Vf, f': Homy (X, X). Yg,g' : Homy (V' D).
Vacw’ fL£f AgLg = F(f,9) = F(f,9)
and locally contractive iff
VX, X0,V €obj(U). Vf, f : Homy (X, X'). Yg,q : Homy (Y, Y).
Vacw? (Whew b<a=f2fAgLg)=F(f,g9)<F(f,g)

Definition 12 (»). Let » : U — U denote the following functor,

a

> (X Bucan) ) 2 (X e (N2 s

0,0 nm+l | nm

+1,0
where = 1is the total relation on X, = s =

and

is defined as follows

n

n+1,0 . ,m
= 1z iff VmeN 1y = x4

T



Lemma 12. If F: U°P? x U — U is locally non-expansive then » oF is locally contractive.

Proof. Let a € w?, f, f' € Homy(X,X’) and g,9' € Homy(Y',Y) such that

Voewl b<a= f2fAgty

By local non-expansiveness of F' it follows that

b
Vb S w2. b < a= F(f, g) :F(X/’y/)*}nep(‘)(’y) F(f/7g/)

To show that F(f,g) =, P Y —new F(x,y) F(f',9') take an z € [ F(X7,)")|. By definition of » to show

that F(f,9)(z) =p rx,y) F(f',¢')(2) it suffices to prove that F(f,g)(z) 2F(XJ;) F(f',¢")(x) for all b < a.
This follows easily from the assumption. O

1.2 Solving Recursive Domain Equations in U/

In this section we give the explicit construction of a solution of recursive domain equations in the category of
cofes indexed over w?. We proceed by building a fixed-point of a locally contractive bifunctor F : (U°P xU) —
U.

The construction will proceed in two stages. First, we will construct partial limits that are indistinguish-
able for logical steps (this construction is analogous to the construction of the solution in w-indexed spaces),
and afterwards we will use these to construct the overall fixed-point of the functor.

Lemma 13 (partial limits). For any space S € U, a natural number n and two functions ps : F(S,5) — S
and eg : S — F(S,95) such that ps o es =idg and eg o pg nz’oidp(s,s), there exists a space X € U and maps
px  F(X,X) - X and ex : X — F(X,X) such that px oex =idx and ex opx n’zmidF(X,X) for any m.
Additionally, there are maps wx : X — S and tx : S — X such that mx ovx =idg and tx owx 7l:’oidx, and

that Tx opx =pso Flix,7mx).
Proof. The proof follows the outline of the construction of the solution for the w-indexed cofes. We begin
by constructing F;, together with projections p; : ;11 — F; and embeddings e; : F; — F; 1 as:
Fo =5 Po =Ps €p =eg
Fip1 =F(Fy, Fy,) pr+1 =F(ex, pr) ex+1 =F(px, ex)
First, we claim that the properties of pg and eg extend to the whole sequence:

Vk. Pk © €k = idFk (1)

n)

Vk. €L O Pk = idFk+1 (2)

=

We prove these properties by induction. For (1), the base case holds by our assumption, while for the
inductive step we have:

IH . . .
Ph+1 © ekt1 = F(ex, pr) o F(prex) = F(pr o ex,pr o ex) = F(idp,,idg,) =idp, ., -

Similarly, for (2) the base case we already assumed. For the inductive step, we proceed similarly:

Kl . .
ert10Pkt1 = Fpr,ex) o Flex,pi) = Flex oprseropr) "= F(idp,,,,idr,,,) =idF,,,,

where the crucial (n,k + 1)-equality holds by induction hypthesis (for (n,k) on the arguments) and local
contractiveness of F.



We can define a helpful, iterated versions of projections and embeddings, written pfc : Fyy1 — Fy and
ei B — Fk+l7 as

0 _; 0 _;
P =idp, e, =idp,
41 _ I+1 _ l
Py = D © Pk+1 €, = €kt 0e.

We immediately get the following observations:

Vk, . ploel = idp, (3)

n,k .
VEk, 1. eﬁﬁ 0;05C = idp,, - (4)

Now we are ready to define X. Let

X = {x e[ 7 ‘Vk- T, =pk($k+1)}’

keN

with equality defined pointwise, i.e., = Lo iff Vk. xp éFk z},, for p € w?. Clearly, X is and object of U.
We can now extend projections and embeddings to X: we define 7y, : X — F} and ¢ : F, — X as
eik(s) ifi>k

mi(x) = 2 (tx(8))i = { PEi(s) ifi <k

Again we can use (3) to show that both these maps are well-defined.
Now we are finally ready to define the maps px and ex. We take

(rx(2)k = pr(F(tk, m1)(2)) ex(z) = lim F(my, we)(exar)

First, we need to check that these maps are well-defined. For px, this amounts to checking that px(z) €
X, since it is clearly non-expansive. Thus, we have

Pe((px(2)k+1) = Pe(Pr1 (F(thr1, Th11)(2))) = pr(F(er, pr) F (thr1, Tht1)(2)) =
Pr(F(th+1 0 ek, pr © Tr1)(2)) = pr(F (ke T) (2)) = (px (2))ks

where the identities t;+1 0 e = ¢ and py o T+1 = p are easy to check.

For ex, we need to check that the limit actually exists. Since we are working in i, it is enough to show

that the chain is Cauchy: we proceed by showing that F'(my, t)(exxy) i F(mgs1, tkt1)(€k+1Tk41), With

the Cauchy condition (up to n) following by simple induction. We have:

n,k+1
F(mgst, 1) (ent12p41) = Fler o mh, tk 0 i) (€rtr1Zk41) = F(mh, 1) (F ek, Pr) (€pt1Zk41)) =
et 1
F(ry i) (041 (eri1241)) = F(mp i) (@n1) "= F (e, ) (e (pr(z41))) = F(mp, ) (eer).-

The (n, k + 1)-equalities follow ultimately (easy check) from ey o pg n:’kid, (2) and contractiveness of F. Like
with px, it is an easy check that ex is non-expansive.

Finally, we can prove the two required properties: px oex =idx, and Vm. ex opx n’:midF(X’X). For the
first one, we compute as follows:

px(ex(x)x = pr(F(uk, 77’“)%211\1 F(Tm, tm)(€mTm))) = Dk ifé% F(Tmtk © Uk, Tk © Lynte) (Emg kTt )s

where we only considered the tail of the chain past its k-th element in the second equation, and used the
fact that nonexpansive maps preserve limits. Since, as it is easy to check, T4 0t = €)', M ovm + k = pi*
and F(el",pi') = piy1, we get:

P im (T k © bk, T © by k) (€makTmrk) = Pr Um F(e, pil') (e 4mThym) =
meN meN

lim p7* (e T = lim x = T =x
pkmENpk—H( k+m k+m) pkmeN k+1 pk( k+1) k



For the other direction, we want to show that for any m and z, ex (px (z)) "= z. Unfolding the definitions,

we get
ex(px(z)) = }Cienlf\l](F(Wk, tg) o ex o px o Fug,m1))(2)

It suffices to show that k-th element of this chain is (n, k)-equal to z: then by the similarity of chains their
limits will be (n, m)-equal for any m. Thus, we have

F(ﬂ'k,bk) O €k O Pk OF(Lk,ﬂ'k) n:,k F(Trk,Lk) OF(L;C,’]Tk) = F(Lk O T, Lk O7Tk> Tlik F(idx,idx) :idx

The first of the (n, k)-equal steps follows by (2), while the second follows from ¢j o 7, nikidX, which in turn
depends on (4).

Finally, we take mx = mp and tx = to; the properties follow trivially from the definition and (4), while
the final property is exactly the definition of px at index 0. O

Theorem 1 (solutions of recursive domain equations). For any locally contractive functor F: (U xU) — U
such that F(1,1) is inhabited (by xp 1)) there exists a space X : U such that X = F(X, X).

Proof. The idea behind the construction is to iterate the construction from Lemma 13 to construct a tower of
progressively closer approximations of the solution, and then to construct a limit of it. To this end, we write
G(S,ps,es) to denote the construction of the lemma, i.e., a quintuple (X, px,ex,Tx,tx) whose existence
the lemma shows.

Next, we proceed with the construction of a sequence of spaces (X; : U);en together with maps m; :
Xi+1 — Xi7 L X; — Xi+1, Di: F(XZ,XZ) — X; and ¢; : X; — F(X“X,) Fil"St, let

(X07p07 €0, - 7) = g(la !F(1,1)7 *1 > *F(l,l))7
where !g(; 1y : F/(1,1) — 1 is the unique map into the unit type. Next, we proceed by induction, taking:
(Xn+17pn+1v 6n+1,7(':)“ L;,) - g(F(Xnan)vF(envpn)aF(pn7 en))v

and setting m, = p, 0T, tn =Ly O €n.

In order for this definition to be valid, we have to check several properties. Firstly, for the first application
of G, we need !p(1,1) © (1 + *p(1,1)) =id1, which holds trivially, and (x1 — *p(1,1))0!r(1,1) Oioidp(l,l), which
also holds trivially, since any two objects are (0, 0)-equal.

Next, we need to check that these conditions also hold for the inductive step. We have

F(enapn) o F(pmen) = F(pn O €n,Pn O en) = F(ianvian) :idF(X7L7X”)7

where we use the fact that p, o e, = idx,, which comes from Lemma 13. Similarly, we have

n+1,0 . . .
F(pn,en) o Flen,pn) = F(en opn,enopn) = Flidpx, x.),idrx,, x.) Fidrrx,, x0), 7 (X0, X)) -

Here, the crucial (n+ 1, 0)-equivalence comes from local contractiveness of F': it means we only need to show
that e, o p, = id F(X,,X,) for any m, which is precisely what Lemma 13 gives us.

Finally, we also check that m, : X,11 — X, and ¢, : X;, = X,4+1. The construction gives us 7, :
Xnt1 — F(X,, X,), so the composition p,, o 75 indeed has the right type; similarly for ¢,,. We claim that

Vn.m,ol, = idx, (5)

o

Vn. i, om, = idx,,,, (6)

which is easily checked by unfolding the definitions and using properties of p,, ey, 7, and ¢y . Furthermore,
we prove an additional claims, and its two simple corrolaries

Vn. Fin,m™) = T, 0Pnt1 (7)
vn. Tn ©Pn+1 = Pn O F(L'ru Wn) (8)
V. F(tn,Tn) 0o ent1 = my (9)



The first property, which is a restatement of the final property of Lemma 13 is proved as follows:
F(Lnaﬂ'n) = F(L% O €n,Pn © WSL) = F(envpn) o F(LZJTZ) = 71',3 O Pn+1,
where the last equality is the direct application of the property from the lemma with the definitions used
in the inductive step of the construction. The two corollaries follow using definitions and, in the second
case, (5).
As for the previous construction, we define iterated versions of 7 and ¢:

0 0

T, = idxn by = ian
Tt = T o Tk = g0,
and prove, by simple induction, the iterated versions of properties:
Vo k. mh o = idy, (10)
Vn, k. i o nk ) idx,,., (11)

Now we can construct what we claim to be the fixed-point of the recursive domain equation. We take

X €U as:
X:{xGHXn
neN

Vk. T — Wk(xk—i-l)},

again, with equality defined pointwise.
Similarly to the previous construction, we extend the projections and embeddings to X: we define
ﬂ,f:X—>Xk andv,f:Xk—>Xas

i (@) = o R A

k i s) ifi<k
Finally, we can define px : F(X,X) - X and ex : X — F(X, X). We take
(px (2))k = pe(F (77 (2)) ex () = lim F(ri}, i) (ex(zx))
First, we check that these maps are well-defined. For px, we only need to show that px(z) € X. We compute

T ((px (2)k41) = T (a1 (F (i1, m41) (2))) = Pr(F (v m0) (F (11, T41) (2)) =

Pr(F (g1 0t T 0 Mioy1)) = pe(F (0, 1) (2)) = (px (2))i-

In the computation above, the identities LkX = LkX+1 ot and 7y o wf_H = w,f are easy to check, and the
remaining one needed is (8).
In order for ex to be well-defined, we need to check that the limit exists. To this end, it is enough to show

that the sequence is Cauchy: we are going to show that F(m,tX)(ex(zx)) o F(mif s i) (eng1 (Tg1)).
We have:

k,
F(mid tier) (a1 (Thg1)) 2 Flup o i om)(ensa (@ri1)) = F, ) (F (o, m) (e (za11))),

where the (k, 0)-equality follows from contractiveness and (6). By (9) we have F (i, 7)) © €41 = 7p, and so

F(mi¥ i) (F (g, mi) (enn (wr1))) = Bl i) (m@asn)) = F (il i) (enopromf)(wasn)) = F(mi¥ i) (ex(an)).

We now turn to showing that px and ex form an isomorphism. First, we claim that px(ex(z)) = x. To
show this, we pick an index k and compute:

px(ex (@) = pe(F (i, mid) i Py, 17) (en(@n)) = T (p 0 F (5, m) © F(Miins tiien) © €hin) (Trn) =

B (pr 0 F (M7 © 10 T © tiien) © Chtn) (Bin) = 0 (pr 0 F (150, 7E) © €npi) (@) =

lim (7} 0 pryk © €ntk ) (Tntk) = Um 7 (Tp4x) = imay, = xp,
neN neN



The identities wf kO Li( =y and 77,? o Lf ) = T, are easy to check and analogous to the case in Lemma 13.

The remaining identity py o F (¢}, 7)) = 7} © pryn Wwe prove by induction on n as follows. The base case

holds trivially, since Lg = 71'2 =idx,. For the inductive case, we have

+1 _n4ly _ _ _
pro F(g™ my ™) = pr o F(f, © thpn, Thon © m) = Pre 0 F(1g, m) © F(thtns Thon) =
_ _ . ntl
Tk © Prtn © F'(thtns Thn) = Th © Thin © Phintl = WZ O Pk+n+1,

where the second-to-last equality follows by (8).
We are left with the final obligation, showing that ex(px(z)) = z. To this end we show that

ex(px(z)) = hI%(F(ﬂ'?,Li() oepopro ik, mi))(z) = lir%z = z.
ne ne

We show that the two chains under the limit approximate each other, at progressively greater, unbounded
ordinals, and so the limits are equal. Precisely, we show that k-th elements of the chain are (k,0) equal:

k,0 kO /. .
F(m¥, i) oepopro F(iX,m) = F(ay, i) o F(ii¥, mik) = Fi oml ¥ oy ) = F(idx, idx) =idp(x,x) -

Similarly to the first construction, the first (k, 0)-equality follows from (6), and the second — from (11). O
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2 Syntax and operational semantics

7,0 = 1l|7xo|7T—=0|7ref|Io. 7]
A = Aale
I == T,x:7]¢
ve Val == x| fix f(z). e|l]| packv | (v1,v2)
e€ Exp = wv|epea|(er,e)|fste]|snde
| lelep:=ey|refe
| pack e | unpack e as x in ey
KeECtx = o|Ke|lvK|(K,e)|(v,K)|fst K|snd K
| 'K|K:=e|lv=K]|refK
| pack K | unpack K as x in e
AFT Alro AFT Alro AFT AakrT
AkF1 AFTXx0 AFT—>0 Ak T ref AFJa. T Aok«
AFT AT, firT—ox:The: o ATke :7—0 A;Tkey: T
AT o:thx:T AT E=x:1 AT F fiz f(z).e:T— 0 ATkeyey:o
A;TFe: T ref A;TEey 7 ref A;They: T AT ke AT Ee:olr/a)
A;THle: T A;TFepi=es: 1 AT Erefe:r ref A;TFpacke:Ja. o
A;TFep:da. T ATz :T7hey: o AFo A;Tke:m A;TkFes:o A;TFe:Txo
A;T F unpack ey asx iney: o AT F (eg,e9) i 7 X0 AT fste: T
A;TFe:TXxo
A;T'Fsnde:o

Operational semantics

EvavLFix

EvALUNPACK

(fix f(x). €) v,h — elfix f(x). ¢/f,v/z], h

EVALREAD
I € dom(h)

1,k — h(l), h

EvALFsT

fst (v1,v2),h = v1,h

and

e,h =%e h

EVALWRITE
I € dom(h)

l:=v,h = hll — ]

EvALSND

snd (v1,v2),h = va, h

e,h — e, h

unpack (pack v) as x in e, h — e[v/z], h

EvALALLOC

I & dom(h)
ref v,h — 1 h[l — o]

EvaLCTx
e,h— ¢, n

Kle],h — Kle'], n’

12 "
e, —="e" h

11

e,h _>n+1 e”,h"



Lemma 14. If K[e],h —% ¢/ b’ / then there exists i1,io, €’ and h" such that
e;h =" e’ W A K", == ¢ W 4 i =1y + i
Proof. By induction on 1.

If i = 0 then take iy = is = 0, ¢/ = e and h” = h. Otherwise, K[e],h — ", h" and €”, b ==L e/, 1/ 4.
If K = e then we simply take i; =4, i = 0, €’ = e and A’/ = I’. Otherwise, we proceed by case analysis on
the Kle],h — €”, h" derivation:

Case EvALCTX: then ¢’ = Kle'] and e,h — €’ h”. Thus, by the induction hypothesis, there exists
11,19, € and A"’ such that ¢ h" —* "' W £, Kle""],h"" =" ¢ b /A and i — 1 = i1 + is. We thus
have that, K[e], h =1+ K[e/”],h"" / and K[e""], k" — ' b /.

Case EvaALFI1X, EVALREAD, EVALWRITE, EVALALLOC, EVALUNPACK, EVALFST, EVALSND: then e €
Val. Thus, e,h =% e, h /4 and Kle],h —' e/, 1/ 4. O
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3 Logical relation

Assume a c.o.f.e. Inv over w? and isomorphism
& Inv= e ((N Iy Inv) ™3" UPred(Heap x Heap)))
Define Type, World and Inv as follows

World 2 N ™ Iy Type = World ™" UPred( Val x Val) Inv ™ World 3" UPred(Heap x Heap)

Value relation V[AF 7] : Type™ — Type

VIAF1],(W) Z {(n,m,*,%)}
VIAF T xa],(W) <

Iy

{(n,m,vr,vs) | Jvir,var, v1s,v25. v1 = (Vir,v21) Avs = (vis,v2s) A
(n,m,vir,v15) € VIA E7],(W') A (n,m,ver,v25) € V[AF o] ,(W')}
VIAFT = a],(W) Z {(n,_,vr,vs) | ¥n' <n. YW' > W.
(Ym. (n',m,ur,us) € VIAF 7],(W')) = (n' + 1,05 ur,vs us) € EV[AF a],) (W)}
VIAE T ref] ,(W) “{(n,m,l1,ls) | 3ve dom(W). EW (1)) £ — inv(V[AF T],,11,1s)}
V[A, a ko] (W) = p(a)(W)

ef

>

I

VIA F Ja. 7],(W)

(n,m, pack vr, pack vs) | v € Type. (n,m,vr,vs) € V[A, a b 7] pjarsn) (W)}

mon

Reference invariant inv : Type X L x L — World = UPred(Heap x Heap)

def

im}(u, l[,ls) = \W. {(n,m,hl, hs) | l; € dom(hj) Nlg € dom(hg) N (n,m, h[(l[),hs(ls)) S Z/(W)}
World satisfaction

|W | & (n,hr,hg) | n=0V Irr,rg: dom(W) — Heap. hy = ,r;(t) Nhg = ,rg(t) A
Vo e dom(W). Ym. (n—1,m,rr(¢),rs(t)) € EW())(W)}

Expression closure

EW) EAW. {(n,er,es) | Vn' <n.Vi<n' Vhy hg € Heap. VW' > W.
(n',hr,hs) € |W'| Aer,hr =t e, by £ =
va,hig. w’ >w'. es,hg —* ’Us,hig N 6/1 e Val N\
(n' —i, b, b)) € |[W" | AVm. (n' —i,m, e}, vs) € v(W")}

Context relation VI[AFT]: Type™ — World ™3" UPred(Val" x Val')

V[AFT], (W) o (n,m,or,08) |V(x:7) €. (n,m,o1(x),05(x)) € V[A+ 7],(W)}

13



Logical relation ’A;F Eer<jpges:T

AT = er <pog es: 7 =2 Vn € N.YW € World. Voy,05 € Val. Vp € Type®™.
(Vm. (n,m,or,05) € V[AFT],(W))
= (n,01(er),05(es)) € EV[AF 7],)(W)

Lemma 15.

VYW1, Wy € World. Yhy, hs € Heap. VYn,m € N.
W1 "E" Woria Wa A (n, hy, hs) € |Wi] = (n,hr, hs) € |Wa]

Proof. Since the conclusion is trivial for n = 0, assume n > 0. By assumption, there exists ry,rg :
dom(Wy) — Heap such that

hr = 1Ledomwy)r1(t) hs = ,caomw,)rs(t)
and
Ve € dom(Wh). Ym. (n—1,m,rr(1),rs(t)) € EW1(e))(Wy).
Since Wy 2" Wy it follows that dom(Wy) = dom(W3). Let ¢ € dom(Ws) and m’ € N. Thus, by assumption,
(n—1,m',r(1),rs()) € E(W1(2))(W1). Since Wy =" W it follows that
W1 (1) "= i €W (1))
and thus (W1 () (W1) "2 €(Wa (1)) (Wa). Hence, (0 — 1,m’ + 1,71(1),75(1)) € E(Wa (1)) (Wa). O

Lemma 16.

VW1, Wy € World. Yv € Type. Yn,m € N. VYey,eg € Exp.
W1 "= Worta Wa A (n,er,es) € EW)(Wy) = (n,er,es) € E(v)(Wy)

Proof. Assume
i<k<n Wzl > Ws (k‘,h[,hs) S |_W2/J ej,h[ —>i elI,hlI7L>

; n,m

Then there exists a W/ such that W[ > W; and W| =" WJ. Hence, by Lemma 15, (k,h;,hg) € |W{].
There thus exists vg, 'y, and W{" > W/ such that

e € Val es,hs —* vg, Iy (k —i,h}, hs) € (W] Ym. (k —i,m, e}, vg) € v(W)
Hence, there exists a W4’ such that W4 > W4 and W' "2" W from which it follows that
(k —i,h}, hy) € [WY] Vm. (k —i,m, e}, vs) € v(Wy)
by Lemma 15 and non-expansiveness. O
Lemma 17.

Vv € Type. Viz,ls € Loc. inv(v,lz,1ls) € World ™3 UPred(Heap x Heap)

Lemma 18. The value relation is well-defined. In particular,

e V[AF 7], is non-expansive for all p € Type®,
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e V[A+ 7], is monotone for all p € Type®,
o V[AF 7],(W) is downwards-closed for all p € Type™ and W € World.

Proof. By induction on the A F 7 derivation.

e Case 7 = 1: trivial.

e Case 7 = o ref- to show that the value relation is non-expansive, assume Wy "= Wy, (n/,m’) < (n,m),
and (n',m/,l1,ls) € V[AF 7],(W7). Hence, there an ¢ € dom(W7) such that

’ !
n’,m

EWi(b) = > T inv(V[A & a],, 11, 1s)

n,m

Since ¢ is non-expansive, £(W1 (1)) E(W2(r)). By transivity it follows that

» Inv

’ !
n',m

E(Wa(1)) s 7 IV(V[A o], 1, 1s)

and thus, (n/,m’,l1,ls) € V[A + 7],(W2). The value relation is easily seen to be monotone in worlds
and downwards-closed in the step-index.

e Case 7 = 07 — 09: to show that the value relation is non-expansive, assume W; "2 W, (n',m') <
(n,m), and (n/,m',vr,vs) € V[A + 7],(W7). Hence,

Vk < nl. YW > .
(Ym. (k,m,ur,us) € VIAF 01],(W7)) = (k+ 1,vr ur,vs us) € EV[AF 02],) (W)

To show that (n',m’,vr,vs) € V[A F 7],(W2), let k < n’, W5 > W5 such that Vm. (k,m,ur,ug) €
, n,m

V[A F 01],(W3). Hence, there exists a W{ such that W{ > Wy and W{ =" Wj. Hence, Vm. (k,m,ur, ug) €
V[A F 01],(W7), since V[A t 01], is non-expansive by the induction hypothesis. It thus follows that
(k+ 1,vr ur,vs ug) € EV[A F 02],)(W]) and, by Lemma 16, (k + 1,v; ur,vs ug) € EV][A
02],)(W3). The value relation is clearly monotone and downwards-closed in the step-index.

e Case 7 = da. o: follows easily from the induction hypothesis.

e Case 7 = a: follows from the type of p.

Lemma 19.

Vn € N. Yvr,vg € Val. VW € World. Yv € Type.
(Vm. (n,m,vr,vs) € v(W)) = (n,vr,vs) € E(w)(W)

Proof. Assume
0<n <n i<n W' >Ww (n',hr,hs) € W’ vr, hr =t ey Wy A

Since vy is a value it follows that ¢ = 0, €7 = v, and A} = hy. Thus, we pick W’ = W', vy, = vg and
's = hs. By downwards-closure it follows that

(n' —i,hr,hs) € |[W'] Vm. (n' —i,m, e}, vg) € v(W')
as required. O

Lemma 20. A;T\z: 7z <z:T.
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Proof. Assume
Ym. (n,m,o1,05) € V[AF T,z : 7], (W)
Thus, Vm. (n,m,o7(x),os(x)) € V[A - 7],(W) and by Lemma 19,
(n,o1(2),05(x)) € EV[AF 7],)(W)

as required.

3.1 Compatibility lemmas
Lemma 21. If ;T f:7 s o,x: 7 e <eg:o then A;T E fix f(x). e < fix f(x). es: 7 — 0.
Proof. We prove by induction on n that

Vn € N. YW € World. Vp € Type™. Vo, 05 € Val' .
(Vm. (n,m,or,05) € V[AFT],(W))
= (Ym. (n,m,or(fix f(x). er),05(fix f(x). es)) € V[AF T —= 0], ,(W))

from which the conclusion follows easily, by Lemma 19, as fix f(z). e; and fiz f(z). es are values.
The base case follows trivially, as =(n’ < 0) for all n’.

For the inductive case, assume
Vm. (n+1,m,o1,05) € V[AFT],(W)
To show that
Vm. (n+1,m,o;(fir f(z). er),os(fir f(x). es)) € VI[AF T = o] ,(W)
let n’ <n+1, W > W such that Vm. (n/,m,ur,ug) € V[A + 7],(W’). Then it remains to show that
(0" +1,01(fix f(). er) ur,os(fiz f(z). es) us) € EV[AF o] ,)(W')
Assume
i<n” <n W'’ >w' (n",hy,hg) € |W"] or(fir f(x). er) ur,hy =" ey, by A
Hence, i > 0 and o;(fiz (). er) ur, hr — or(er)ur/z, or(fix f(x). er)/f],hr =1 €}, b).

Since n” < n, by downwards closure and monotonicity, it follows that
Vm. (n",m,or,08) € V[AFT],(W")
Thus, by the induction hypothesis,
Vm. (n”,m,or(fix f(x). er),o5(fix f(z). es)) € V[A T — o] (W)
We thus have that
Vm. (n",m,o7,05) EV[ALT, f:7—o,2z:7],(W")

for o = oflx — ur, f — fix f(x). ef] and o = oglz — ug, f — fix f(x). eg].

From the A;T, f: 7 — 0,2 : 7 | ey < eg : 0 assumption it thus follows that
(n",o1(er), o5(es)) € EV[AF o], ) (W)

The rest is easy.
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Lemma 22. I[f A;T e <ejs <7 —=0 and A;T | eay <egs: 7, then A;T Eejr ear < ejg eag:o.
Proof. Assume Vm. (n,m,or,05) € V[AFT],(W) and
i<n' <n W' >w (n',hy,hg) € |[W'] orlers ear), hy —" €5, by /A
Hence, by Lemma 14, there exists i1, 2, h1r, and €]; such that
oreir), hy =" €, hir A eir orlear), hiy =2 ey by A

and 7 = i1 + 3.

From the A;T = e17 < e19 < 7 — o assumption there exists W > W' v and hyg such that

os(ers),hs =% vis,his (0 — i1, hir,hag) € (W] Vm. (n' —i1,m,ei,v15) € VAT — o] (W)
and e} ; € Val. Thus, by Lemma 14, there exists i3, i4, hor and e}; such that

or(ear), hir =% ey, har / ey ey, har =" el by A

and 1o = 13 + 4.

From the A;T = ear < eag : 7 assumption there exists W' > W vag, and hog such that

os(eas), h1s —* vag, has (0 —i1 — i3, har, hag) € |[W"]  Vm. (n' —iy — iz, m,eh;,v25) € V[T](W')

and efy; € Val.

By (n' —i1,0,€i;,v15) € V[AF 7= o], (W") it follows that
(n' — i1 — i3, €l 5, v15 vag) € EV[AF ] ,) (W)
Hence, there exists W > W', vg and h'y such that
v1s Vag, hag —* vg, hls (n' —i,hy, W) e (W] Vm. (n' —i,m,ef,vs) € VA F o] ,(W")
and e} € Val. Lastly, og(e1s e2s), hg =" vg, hs. O
Lemma 23.

Vir,lg € Loc. YVhy,hg € Heap. Vv € Type. Vi € N. VW € World. Vn,m € N.
inv(v,l,lg) n’:m>m EW() A (n,hr,hs) € |[W]AR>0
= I € dom(hr) ANls € dom(hs) A¥Ym' € N. (n—1,m', hi(l;),hs(ls)) € v(W)
Proof. By definition of heap satisfiction, there exists ry,rg : dom(W) — Heap such that
hr =T, cdomw)r1(t) hs = ,egomw)rs(t) Vm. (n—1,m,r1(t),rs(t)) € EW()(W)
Since inv(v,l,ls) n’:m>m) E(W(v)) it follows that inv(v,ir,lg)(W) n_:1’1>m E(W())(W) and thus
(n—1,0,r7(2),rs(t)) € inv(v,l1,ls)(W)

Hence, i1 € dom(r;(t)),ls € dom(rg(t)).

To show that Vm/. (n—1,m/,r1()(I1),rs(t)(ls)) € v(W), assume m’ € N. Since (n—1,m'+1) < (n,m)

it follows that inv(v, 11, 1s)(W) " "2 — &(W(1))(W) and thus
(n—1,m',rr(¢),rs(v)) € inv(v,l,1ls)(W)
Thus, (n —1,m/,r;(t)(lr),rs(¢)(ls)) € v(W). O
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Lemma 24. If A;T =er <eg: 7 ref then A;T Eler <leg:T.
Proof. Assume Vm. (n,m,or,05) € V[A FT],(W) and
i<n <n w'>Ww (n',hr,hs) € |[W'] or(ler), hy =" €y, by £
Hence, by Lemma 14, there exists 71,42, v17 and hi; such that
orler), hr =™ e1r, hir # eir,hiy =% €, by £

and 7 = i1 + io.

From the A;T | ey < eg : 7 ref assumption there exists W” > W', v;5 and hyg such that

os(ers), hs =% vis,his (' —i1, har, has) € [W”] Vm. (0’ — i1, m,eir,v1s) € V[A E 7 ref] ,(W")
and ej; € Val. By the value relation there exists an ¢ € dom(W") such that

n’—iq1,0

EW"() = s 7o v(V[A F 7], e11,v15)
Since n’ — iy > 0 it follows by Lemma 23 that ey; € dom(his), vis € dom(hig) and
Vm. (n' —i1 — 1,m, hir(eir), his(vig)) € V[T 7] ,(W")
Lastly, since e1; € dom(hq) it follows that h} = his, vi = hqr(e1r) and io = 1. O
Lemma 25.
Vi, ls € Loc. Vhy,hg € Heap. Vv € Type. Vo € N. VW € World. Yn,m € N.

) n,m

= o W) A (n,hhs) € [W]AVmM. (n—1,m,vr,vs) € v(W)
= (TL, h[[l[ — ’U[],hs[ls — vsD S LWJ

(v, l,ls

Proof. As the conclusion is trivial if n < 1, assume n > 1. By definition of heap satisfiction, there exists
rr,rs : dom(W) — Heap such that

hr = 1Ledomw)ri(t) hs =, cdaommw)rs(t) vm. (n—1,m,rr(¢),rs(t)) € W () (W)
Since £(W (L)) (W) "= inv(v, 11, 1s) it follows that
(n—1,0,77(¢),rs(t)) € inv(v,ls,ls)
and thus I € dom(r;(v)) and lg € dom(rs(r)).
Let rp = rife— rr(¢)[lr — vr]] and 7 = rgfe — rs(e)[ls — vs]]. Then,
hillr = vi] = Wi dom(ry)r7 () hslls = vs] = Wy dom(r)Ts(¢)
It thus remains to show that
Vo € dom(W). Vm'. (n —1,m/,r}(z),rs(z)) € EW (z))(W)
This holds trivially for all x # . For z = ¢, let m’ € N. Then by assumption (n — 1, m’,v;,vg) € v(W) and
i (vl L) (W) = = E(W()(W)

Thus, (n —1,m/,r}(z),ry(z)) € inv(v,l1,ls)(W) and (n — 1,m/,r}(z),rs(z)) € EW())(W). O
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Lemma 26. If A;T Eejr <ejg:7 ref and A;T | ear <egg: 7 then A;T Eejp:=ear < ejg:=eag: 1.
Proof. Assume Vm. (n,m,or,05) € V[AFT],(W) and
i<n' <n W' >Ww (n',hr,hg) € |[W'] orlers == ear),hy =" ey, by A
Hence, by Lemma 14, there exists 1,2, €], and hqy such that
or(eir), hy = €y, hiy /4 e i=ear, iy =2 e by A

and 7 = il +’LQ

Since A;T = ey < ejg : 7 ref, it follows that there exists W > W', v15, and hys such that
os(ers), hs =" vis,his (0" —i1,hig, has) € (W] Vm. (n' —i1,m, e}, v15) € VA F 7 ref] ,(W")

and e]; € Val. By Lemma 23 it thus follows that €|; € dom(hir) and vig € dom(his).

By Lemma 14 there exists i3, i4, €}, and hoy such that
) / / / ) / /
or(ear), hir =" €5y, har #» €1y = €yp, hor =" €, by £

and 79 = i3 + i4.

Since A;T' = ey < egg : 7, it follows that there exists W' > W wqg, and hag such that
os(e2s),his =" vag,has (' — i1 — i3, har, hag) € (W] Vm. (n' — iy — iz, m,e5;, vag) € V[AF 7],(W")
and efy; € Val.

Thus e}; € dom(hir) € dom(her) and v1s € dom(his) C dom(hes). Hence, by the evaluation of
€l = ey, by = haylel; — eh;], vr = *, and

V15 1= Vag, has — *, hag[vis — vas]

Lastly, by Lemma 25, we have that (n’ — i1 — i3, herle}; — eb;], has[vis — vag]) € [W]. O
Lemma 27.

Vis,ls € Loc. Yhy,hg € Heap. Vv € Type. Vi € N. VW € World. ¥n € N.
(nyhr,hg) € (W] At g dom(W) ANl & dom(hr) ANlg & dom(hg) A¥Vm. (n—1,m,vr,vg) € v(W)
= (n, hill; = vi], hslls = vs]) € [W[e = & Hinv(v,11,15))]]

Proof. Since the conclusion is trivial for n = 0, assume n > 0. By definition of heap satisfiction, there exists
r1,7s : dom(W) — Heap such that

hi = e domw)r1(t) hs = e domw)rs(t) Vm. (n—1,m,r(v),rs(e)) € EW()(W)
Let vy = rilo = [lr = vf]] and 7 = rg[e — [lg — vg]]. Then,
hillr = vy] = Hbedom(r;)rllu) hslls — vs] = HLedom(r’S)T/S@
It thus remains to show that
Vz € dom(W). Vm. (n — 1,m,r}(x),rg(x)) € EW'(z))(W')
where W = W[ — £ Y(inv(v,lr,13)).

This holds trivially for all  # «. For = = ¢, the proof obligation reduces to,
Vm. (n —1,m,[l; — vil, [ls — vs]) € inv(v,l1,ls)(W')

This follows from the Vm. (n — 1,m, vy, vg) € v(W) assumption, by monotonicity. O

19



Lemma 28. If A;T Eejr <ejg: 7 then A;T | referr < refeis: 7 ref.
Proof. Assume Vm. (n,m,or,05) € V[AFT],(W) and
i<n' <n w'>w (n',hr,hs) € |[W'| or(refeir),hy =" ey, by £
By Lemma 14, there exists 1,2, €], and hqs such that
or(eir),hr = €, hir # ref €\, hip —% €, by /£

and i = i1 + io.

Since A;T' = e17 < eyg : 7 it follows that there exists W” > W', v1g, and h;g such that

os(ers),hs =" vis,hus (0 —i1,hir,has) € (W] VYm. (n' —iy,m, e, v15) € V[AF 7],(W")
and e}; € Val. Thus, €} € Loc, €} & dom(hir), by = hirle} — €);] and iy = 1.

Pick vg € Loc such that vs & dom(h1s) and ¢ € N such that ¢ ¢ dom(W"). Let

W"”" =W"[i— & Hinv(V[A F 7], €7, vs))]
By Lemma 27,
(n" — i1, harle] — €], hislvs — vis]) € |[W"|
Lastly, Vm. (n' —i; — 1,m, e}, vg) € V[A 7 ref] (W) and ref vig, h1s — vg, hig[vs — vig].
Lemma 29.
VIA, a - T]pjamviare,] = VIA F lo/a]],

Proof. By induction on the A 7 derivation.

Case AF 1, A,aF a: trivial.

Case AF7Txo0, AbT— 0, AF 7 ref, A+ da. 7: follows directly from the induction hypothesis.
Lemma 30. If A+ 7 then

Vp € Type™. Vv € Type. VIAFT], = V[A, aF 7] jjams)

Proof. By induction on the A F 7 derivation.

Case AF 1, A,aF a: trivial.

Case AFT X0, AFT— 0, AF 7 ref, A+ Ja. 7: follows directly from the induction hypothesis.
Lemma 31. If A;T'Feq; < ejg:o[r/a] then A;T F pack err < pack ers : Ja. o.
Proof. Assume Vm. (n,m,or,05) € V[AFT],(W) and

i<n' <n W' >Ww (n',hr,hs) € |[W'] or(pack err), hy —" ey, by A
By Lemma 14, there exists 41,12, €], and h1s such that

) ! A ) ! !
orleir), hy =" iy, hir 7 pack eip, hir =" ef, h /4
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and 7 = 11 + 2.
Since A;T' = e1 < ey5 : o[r/a] it follows that there exists W > W', vy g, and hyg such that
os(ers),hs =" vig,his (0" —i1,har, has) € (W' Vm. (n' —i1,m, e\, v1s) € V[AF olr/a]],(W")
and €}; € Val. Thus, iy = 0, €} = pack €|; and h}; = hq;.
By Lemma 29, Ym. (n' — i1, m, €|, v15) € V[A, a F 0] yjamviar-,) (W) and thus

Vm. (n' — i1, m, pack €\, pack vis) € V[A F Ja. o] ,(W").

Lemma 32. If A;TFeyr <ejg:3a. 7, A,a;Tz:7H ey <ess:0 and At o then
A;T F unpack er; as x in ear < unpack e1s as T in egg : 0.
Proof. Assume Vm. (n,m,oy,05) € V[AFT],(W) and
i<n <n w'>w (n',hr,hg) € |[W'| or(unpack ey as x in ear),hy = ey, by A
By Lemma 14, there exists 41,142, €], and hyy such that
orlerr),hy =" €|, hir unpack €}, as x in or(ezr), hiy —2 ey, by A
and ¢ = i1 + is.
Since A;T' = ey < eys : Ja. o it follows that there exists W > W', v1g, and h;g such that
os(ers),hs =" vig,his (' —i1, hir, hag) € [W"] Vm. (0’ —iy,m, el vis) € VI[AF Ja. 7], (W)
and e}, € Val. Hence, €|; = pack vi; and vis = pack vjg and there exists a v € Type such that
(n' —i1,0,v11,v1g) € V[A, a b 7] pjarsn) (W)
Furthermore,
unpack €y, as x in o(ear), hiy — or(ear)[vir/x], hir =271 ey, b
and 79 > 1.
By downwards-closure, monotonicity and Lemma 30, it follows that
Vm. (n' —iy —1,m,or[x = vir],05[z = vig]) € VIA,a F T2 : 7] e (W)

Since io — 1 < n/ —i; — 1 it follows from the A,a;T,z : 7 F ey < esg : o assumption that there exists
W >W", vg, and hy such that og[z — v|g](e2s), h1s =" vg, by and

(n —iy —ig, Wy, W) € (W] Vm. (n' — iy —ig,m, e}, v5) € VIA, a b 0] o) (W)
and e} € Val. Lastly, since A I ¢ it follows that

Vm. (n' — iy — iz, m, e}, vs) € V[A F o], (W")
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Lemma 33. If A;T' ey <ejg:7 and AT F ear < eas:o, then AT+ (exr,ear) < (e15,€25) : 7 X 0.
Proof. Assume Vm. (n,m,oy,05) € V[AFT],(W) and
i<n' <n w'>Ww (n',hr,hg) € |[W'] or(eir,ear), hr =" ey, by /4
By Lemma 14, there exists 1,2, €], and hq; such that
or(eir),hr =" €t # (errsor(ear)), hnr =" e, by £

and 7 = il +’LQ

Since A;T = ey < ejg : 7 it follows that there exists W” > W' v1g, and hyg such that
os(ers),hs =" vig,his (0 —i1,hir,hag) € (W] VYm. (n' —i1,m, e}, v15) € V[AF 7], (W")

and e}, € Val.

By Lemma 14, there exists 43,44, €5, and hoy such that
or(ear),hir =" €yr, har /> (€17 €a1)s har =™ €7, by 7

and 1o = i3 + 4.

Since A;T' = ear < egg : o it follows that there exists W > W wvyg, and hog such that
O'S(@QS), hlS —* V28, hQS (TL/ — ’il — ig, h2[, hQS) S LWI//J Ym. (TL/ — il — ig,m, 6’21, 'UQS) S VHA = O']]p(W”I)

and ef; € Val.

Thus e} = (e}, €e5;), B} = hor and i4 = 0. Lastly,
Vm. (n' —i,m, (€}, €e5;), (v1s,v25)) € V[AE T x o] ,(W")
by downwards-closure and monotonicity. O
Lemma 34. I[f A;T'Fer<eg:7xo then A;T ¢ fster < fsteg:T.
Proof. Assume Vm. (n,m,oy,0g) € V[AFT],(W) and
i<n <n W' >w (n’,hy,hg) € |W'] or(fster),hy =% el hy /4
By Lemma 14, there exists 41,42, €7, and hY such that
or(er),hy =" e}, hf # fst e by =" e, by A

and ¢ = 11 + 9.

Since A;T' = e; < eg : 7 it follows that there exists W > W', v%, and h? such that
osles),hs = vg, ke (n' —iy,hY, RS € (W] Vm. (n' —i1,m,e],vg) € VI[AF T X o], (W)

and e € Val.

Thus, (n' —141,0,e7,v%) € V[AF 7 x 0] ,(W") and there exists vi7, var and vig, v2g such that

6/1/ = (U1I,U2I) Ug = ('UlSaU2S)
and
(n' —i1,0,v11,v18) € V[A F 7], (W") (n' —i1,0,v2r,v28) € V[A F o] ,(W")

Thus, by downwards-closure,
Vm. (n' —iy — 1,m,vir,m15) € V[A 7] ,(W")
Lastly, 7 = vir, by = hYf and iy = 1. O
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3.2 Soundness
Theorem 2 (Fundamental theorem of logical relations). If A;T'Fe:7 then A;T Ee<e:rT.
Theorem 3. If — =e; <eg: 1 and er,[] =* vy, b} then then there exists a W'y such that eg, [] =" *, hs.

Proof. Trivial. O

3.3 Example
Lemma 35. Let 7 denote the type

Jo. (1 = a) x (& - N)
Then,

=Tz < flx): T
where f is defined as follows

Y \z.unpack z as y in pack (Az.ref (fsty z), A\z.snd y (12))
Proof. Assume
(n,0,01,05) € V[—;2: 7[(W)
Thus, there exists a v € Type and vy, v21,v15 and vog such that
or(x) = pack (vig,var) os(x) = pack (v1g,vag) (n,0,v17,v15) € V[a k1 = a]ja) (W)
and (n,0,v2r,v25) € V[aF a = N] g, (W).
To show that (n,or(z),05(f(x))) € EV[—F 7]p)(W) assume
i<n' <n W' >w (n',hr, hs) € |[W'] or(z), hy =" e}, b} £

Since oy(x) is a value, b, = hy, ) = o;(x) and i = 0.

Since os(f(x)), hs =* vs, hg, where vg = pack (Az.ref ((fst (vis,v2s))(2)), Az.snd (v1g,v25)(12)), it just
remains to show that

(0 hr hs) € [ W] (n',or(x),vs) € V[ F 7]y(W)
The first proof obligation holds trivially.
For the second proof obligation, let
vV = AW. {(n,m,vr,vs) | I € dom(W). (W (v)) n’:m»l/n\v S(vr,vs)}
and p = [a + '], where
S(vr,ls) LAW. {(n,m,hr,hg) | ls € dom(hs) A (n,m,vr,hs(ls)) € v(W)}
Then it remains to show that

Vm. (n',m,vir, Az.ref ((fst (vig,v2s))(2))) € V]a k1 = o] ,(W')
Vm. (n',m,var, Az.snd (vis,v25)(12)) € V[ b a — N],(W’)
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First function: Assume
n'" <n w">w' Vm. (n”,m,ur,us) € V[a b 1],(W")
To show that (n” + 1,v11 ur, (Az.ref ((fst (vis,v25))(2))) us) € EV][a F a],) (W), assume
j<k<n'+1 Wy, >w” (k,hir, his) € [W1] vir ug, hay =9 €y, by A

By downwards-closure and monotonicity, it follows that (n"4-1,0,v17,v15) € V[ = 1 = o] qs) (W1). Thus,
there exists v1g, hjg and W] > Wy such that e}; € Val and

vig ug, his =" vis, hig (k= j, Wi, hig) € (Wi VYm. (k= j,m, e, v1s) € V[a b afjam,) (W) = v(W7)
Pick a fresh location lg ¢ dom(h}g). Then
(Az.ref ((fst (vis, v2s))(2))) us, his =" ls, hyglls = vis]

Pick a fresh invariant name ¢ ¢ dom(W]) and let W{' = W{[v + £71(S(e},ls))]. Then it remains to show
that

(k - jv hllIv hllS[lS = UlSD € I_WINJ vm. (k - j’mv 6/115 lS) € V[[O‘ = a]]p(WlN)
The first obligation reduces to proving that
Vm. (k—j—1,m,[],[ls = vis]) € S(e,1s)(W])

which further reduces to proving that Vm. (k—j—1,m, e}, v1s) € v(W]"). This follows easily by downwards-
closure and monotonicity.

The second proof obligation reduces to,

k—j,m

Vm. 3 € dom(W{"). W (1)) > Type S(eirls)

kfl',m

which is easily seen to hold, as is an equivalence relation.

Second function: Assume
n <n w">w' Vm. (n”,m,ur,us) € Vlak a] ,(W") =v'(W")
To show that (n” 4+ 1, v ur, (Az.snd (v1g,v25)(12)) us) € E(V[a + N],)(W"), assume
j<k<n”"+1 Wy > W" (k, har, has) € [Wo] var ur, hor =7 €5y, hyp A

To show that Ym. (k — 1,m,ur, hyg(ug)) € v(Ws), assume m € N. By assumption, (n”,m + 1,ur,ug) €

’rL”,ZLJrl

v'(W") and thus, there exists an ¢ € dom(W") such that {(W"(¢)) ~ =" Tome

the extension ordering on worlds, Wa(t) = W” (1) and by world satisfaction, there exists h}; and hjg such
that

S(ur,ug). Furthermore, by

hor < har has < has vm/. (k—1,m/, hyp, hys) € EW" () (W)
Since (k — 1,m) < (n”,m + 1) it follows that (k — 1,m, hl;, hhg) € S(ur, us)(Ws) and thus,

(k —1,m,ur, hhg(us)) € v(Wa)
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